[Deep Learning - CV] AutoEncoder ( AE )
2022. 5. 16. 22:45ㆍAI/Codestates
728x90
반응형
→AutoEncoder 란?
▶ Latent ( 잠재 ) 벡터
원본 데이터보다 차원이 작으면서도, 원본 데이터의 특징을 잘 보존하고 있는 벡터
▶ AutoEncoder의 쓰임새
→ 차원축소 ( Dimensionality Reduction )
→ 데이터 압축
→ 데이터 노이즈 제거 ( Denoising )
→ 이상치 탐지 ( Anomaly Detection )
AutoEncoder 코드 구현
def create_AE():
input_img = Input(shape=(32, 32, 1))
channels = 2
x = input_img
for i in range(4):
channels *= 2
# 사용할 함수 : Conv2D(activation='relu', padding='same'), Concatenate(), MaxPooling2D(padding='same')
x1 = Conv2D(channels, (3,3), padding = 'same', activation = 'relu')(x)
x2 = Conv2D(channels, (2,2), padding = 'same', activation = 'relu')(x)
x = Concatenate()([x1, x2])
x = MaxPooling2D(padding='same')(x)
x = Dense(channels)(x)
for i in range(4):
# 사용할 함수 : Conv2D(activation='relu', padding='same'), UpSampling2D(padding='same')
x = Conv2D(channels, (3,3), padding = 'same', activation = 'relu')(x)
x = UpSampling2D()(x)
channels //= 2
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
autoencoder = Model(input_img, decoded)
autoencoder.compile(o
728x90
반응형
'AI > Codestates' 카테고리의 다른 글
[컴퓨터 공학 기본과 파이썬] Python Programming (0) | 2022.05.30 |
---|---|
[Deep Learning - CV] Generative Adversarial Network ( GAN ) (0) | 2022.05.17 |
[Deep Learning - CV] Beyond Classification ( Segmentation & Object Detection ) (1) | 2022.05.13 |
[Deep Learning - CV] Convolutional Neural Network ( CNN ) (0) | 2022.05.13 |
[Deep Learning - NLP] Transformer (0) | 2022.05.10 |